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Abstract. Energy levels of the weakly interacting radicals are estimated on the 
basis of planar methyl radical interaction as a model. These levels depend on the 
given separation r between the centers of mass. The appropriate Schr6dinger 
equation is solved by using the Brillouin-Wigner series method. Analytical forms 
for the integrals used to estimate matrix elements are derived. The principle of total 
momentum conservation is strictly obeyed. Some energy levels cannot be estimated 
as a result of divergence. 
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1 Introduction 

In this work we are concerned with the systems that feature interactions weak 
enough to justify an assumption of the potential energy treated as a perturbation 
[1-l. Van der Waals forces are well known to belong to such systems [2]. Inter- 
action between the recombining radicals are also very weak, described by a loose 
transition state [3, 4]. The active centers separation corresponds frequently to 
van der Waals distances for many molecules [4]. Calculus, employing a simple 
Rayleigh-SchriSdinger series, was also used in studies of ion-molecule reaction 
kinetics I-5, 6]. 

Interaction energy of methyl radicals is chosen as our model. Our description is 
based mostly on the model developed by Wardlaw and Marcus [7]. According to 
the WM model the reacting radicals are treated as the interacting quasi-rigid 
bodies. The degrees of freedom are subdivided into conserved and transitional 
ones. The conserved vibrations do not change practically their form of motion 
during the approach along the given separation r between the centers of mass 
(reaction coordinate), while the free rotations of the reactants and their relative 
orbital motion do. The potential for the transitional degrees of freedom incorpo- 
rates nonbonded and bonded interactions [7]. 

This model was found to offer the best reproduction of recombination kinetics 
experimental data [7, 8]. 

A Brillouin-Wigner series is used for the estimation of energy levels of our 
interacting systems [9]; generally, adiabatic approximation is employed [10]. 
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Energy of the interacting systems is represented as a total of electronic, vibrational 
and rotational contributions. Coupling between total angular momentum and 
internal momentum as well as other couplings are not taken into account. How- 
ever, such corrections are feasible and can be worked out were such a need to arise. 

The results obtained in this work are used to investigate an important initial 
stage of radical recombination at higher pressures and temperatures [11]. 

2 Definition of basic values 

In the interacting systems treated as the quasi-rigid bodies the part of the Hamil- 
tonian describing motion at the given separation r between the centers of mass can 
be singled out. This partial Hamiltonian can be written in the form 

/~J =/~rotl +/~rot2 +/~orb + V, (1) 

where /trot1 a n d  /~rot2 are the operators of the kinetic energy of the intrinsic 
rotational energy for the two interacting components, respectively; /lo,b is the 
operator of the orbital energy, and V is the potential. The subscript J denotes the 
total momentum of the system. The distance r in Hj is the parameter to be varied. 

The problem for quantum mechanics is to solve the Schr6dinger equation with 
Hamiltonian Hj, 

^ JM H / , n  = En(r)C  M. (2) 

Equation (2) is a part of the complete equation that incorporates the term 
describing motion of the interacting systems along r. Solutions to Eq. (2) can be 
used as a base to find solutions both in adiabatic and non-adiabatic approxima- 
tions [11]. 

As the principle of total momentum conservation in the system has to be 
obeyed, only those functions ~M solving Eq. (2) can be accepted which belong to 
the class Q (means the one which is continuous, finite and single valued for all 
values of variables) and fulfill explicitly the rules of momentum addition in 
quantum mechanics. The methods used to solve Eq. (2) and calculations of the 
matrix elements are general and can be used to investigate various systems. 

The two methyl radicals are labeled with the subscripts 1 and 2, respectively. 
Rotational motion of radicals is described by using the Euler angles ~, fi and ?. 
Definition of these angles and description of the location of radicals is given in Ref. 
[12]. Throughout, the designations and symbols used are those from Ref. [13]. 

Since the radicals are rotors of the oblate symmetric top type, the operator for 
the kinetic energy of the first radical is written in the form [-13] 

= A 37 + - (3) 

where 

~2 

A1 = - -  (4) 
2I~ 

~2 

= G (5) 
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31 and Jzl are angular momentum operators for molecule 1, referred to mole- 
cule-fixed axis, quantized with numbers j l  and kl, respectively. The moments of 
inertia are I~ = 5.8 x 10 .47 kg m z and Ix = 2.9 x 10 .47 kg m z (Iy = Ix). If the sec- 
ond radical is to be considered, the subscripts 1 and 2 have to be interchanged. 

The third component  of Hamiltonian 1 describes the energy of mutual orbital 
motion. It is given by [13] 

h2 
/torb = ~ L2, (6) 

where/~ is the reduced mass of the system and L, is the operator of the orbital 
motion in the spherical coordinates r, 0 and q~ quantized with number I. 

The last component  of Hamiltonian 1 is the potential of interaction of two 
planar methyl radicals. Search for the analytical form of this potential is a problem 
in itself addressed in Ref. [12]. Approximation is based on the ab initio results of 
Darvesh et al. [8]. At the distance r > 3.5 A this potential can be simplified to the 
form [12] 

g = 2 0 - -  21 c o s  2 01 - -  2 2 c o s  2 0 2 

-- A exp - [f l (r)  cos 012 

--f2(r) cos 01 cos 02] 2, (7) 

where 

cos 01 = cos t ,  cos 0 + sin fll sin 0 cos(~i - ~b), (8) 

cos 02 = cos fl2'cos 0 + sin flz sin 0 cos(c~2 - ~b), (9) 

cos 012 = cos 01 cos 02 + sin 01 sin 02 cos(cq - c¢2), (10) 

fl(r) = 1 + ~ a [ 1 5  + a(6 + a)], (11) 

fz(r) =a-g21 [1 + a(1 + ½a)], (12) 

Zr 
a = - - .  (13) 

2ao 

The coefficients 2o, 21 and 22 are composite functions of r and, moreover, depend on 
some values characteristic for the interaction. The representative values for these 
coefficients for the selected r's as well as the values for some other coefficients are 
assembled in Table 1. 

To estimate the energy levels E,(r) approximate methods of quantum mechan- 
ics have to be applied. Thus Ha is transformed into 

where 

and 

/ t s  = ~ o )  + / ~ , ,  (14)  - ~ j  

/~(0) = /~rot l  -]- /~rot2 -~ /'~orb -~- 20 (15) 

/~' = V - Co. (16)  

Hamiltonian/~(ao) describes the rotational motion of radicals in the field of mutual 
interaction. The eo potential is spherically symmetrical. 
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Table 1. Selected values for the parameters of potential V [3]" 

M. Naro~nik and J. Niedzielski 

r//~ J'l (r) f2 (r) -- A exp(- 2a) eo el 
[kcal/mol] [kcal/mol] 

3.5 90.98 599.2 -- 8.607 x 10- 6 0.0225 O. 1528 
3.7 104.1 736.4 --3.078 × 10 - 6  -0.2135 0.0508 
4.0 126.1 984.6 -6.580 x 10 -7 -0.2968 -0.0091 
4.2 142.4 1182 -2.353 x 10 -7 -0.2824 -0.0216 
4.5 169.4 1531 --5.030 x 10 -8 -0.2321 -0.0248 
5.0 221.6 2279 --3.845 x 10 -9 --0.1485 --0.0182 
5.5 283.7 3272 --2.939 x 10- lo --0.0911 --0.0112 
6.0 356.4 4558 --2.247 x 10-11 --0.0559 --0.0066 
7.0 537.3 8227 -1.313 x 10 -13 --0.0222 -0.0022 

Z =2.7212; A = 564.25 kcal/mol 

Solutions to the Schr6dinger  equat ion (17) with Hami l ton ian  (15) are known 
[13]: 

/~(o),/.(o) ~(o),/.(o) (17) 
J tP'n ~ ~ n  " / 'n  " 

Tak ing  into account  the principle of total  m o m e n t u m  conservat ion wave-  
functions ~(o) can be writ ten in the form 

~ ( O ) = N , . ~ ( /  j j  J ) , .~ . ,  ( j l  j2 [J )D~kD~2k ytml. (18) 
n / n j /  i 1 2 2 

j / ~ l  2 t i l l  / T t 2  " ' 

Jt The  symbol  D,,Ik I is the generalized spherical function describing the rota t ional  
mo t ion  of the first radical, while ml is the project ion of j l  on the fixed axis x[l) [-12]. 
Analogous  no ta t ion  refers to the second radical. The  symbol  Yt,,,, (0, 4)) is the wave 
function, spherical  harmonic ,  describing the orbital  mo t ion  of radicals [13]; mz 
is the project ion of 1 on the fixed axis in the center of mass  frame. The  symbol  
j denotes  addi t ion of ja and jz. I t  takes on the values within the interval 
[jl --J2[ ~ j ~ Jl -{-J2; mj is its project ion and is equal  to mj = ma + m2. Thus, the 
total  m o m e n t u m  J can take on the values [ l - j [ ~< J ~< l + j while M = m t  + mj. 

The  symbols  (~:~ ~ [  ~j) are the coefficients for expansion of the states deter- 
mined  by the number s  [Lmj)  into the states [jl,ml)]j2,mz), called the 
C l e b s c h - G o r d a n  coefficients [13]. Similarly, the symbols  (m~, j J m,[ U) are the coeffi- 
cients for expans ion  of the states [ J, M )  into the states [j, mj > Y~,m,. A quant i ty  

a / 2  
{2jl  + 1 2jz + 1 (19) 

is the normal iza t ion  coefficient determined on the basis of the condi t ion for 
or thogonal i ty  and  normal iza t ion  of spherical functions and spherical harmonics  
[13]. Thus,  the symbol  n denotes  the set of quan tum numbers  n - { ja , j2 , j ,  l, 
J, ki, k2}. The  energy levels E (°) are given by 

E(, °) = Aaja(Jl +1)  + (BI -- Aa)kl  + A2jz(j2 +1)  + (B2 - A2)k2 

h + ~ l(l + 1) + Co. (20) 
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Inspection of Table 1 shows that the radial part of potential V, i .e./) ' ,  decreases 
markedly with increasing r. The decrease in the last term of Eq. (7) is especially 
pronounced. Apparently, for some range r the dependence on the orientation 
becomes a small perturbation with respect to/~(jo). If so, solutions to Eq. (18) are 
a natural basis for calculations. 

The matrix elements of the type shown below as Eq. (21) have to be estimated: 

f... (21) 

d~ is the element of volume and the limit of integration extends over the whole 
range of variability [13]. The symbol m denotes the set of quantum numbers 
{j~,j~,j ' ,  l', J, kl ,  kz} that is equal or unequal to n. Estimation of these integrals 
follows in the next section. 

3 Estimation of matrix elements 

Matrix element given in Eq. (21) can be written as 

Vn m z~(o) /_ 1_(o) ---- -- el tlP'n , COS 2 01 ~t(m °)) -- e2tllJ n , COS 2 02 ~//(m 0)) - -  A exp(-- Zr/ao) 

× (~o), [fl(r) cos 0,a --f2(r) cos 01 COS 02"]21//{m0) ) (22) 

and can be evaluated using the well-known formula for the operator-products [10] 

= 2., tq', , RO~)) • (23) ~ T m '  ] \'tim' , 
Ill t 

For instance, 

( I~/(0)' COS2 012 I//(mO)) ~--- Z (~1(0)COS 012 ~/(mO,))(~(m0, ), COS 012 ~/(mO)). (24) 
t/l' 

To estimate the matrix element, V,,~, the integrals (~°),cos0i~(,,°)), 
(~0), cos 02 ~ ) )  and (~(0), cos 012 @(m°)) have to be calculated. One more notation 
is useful to describe the relations between the sets n and rn. Let us consider the 
integral for which j~ = j l  + 1, J2 = J2 - 1 (J2 > 0): 

( j l  + 1, Ja -- 1, j, It cos 012 IJl,Jz,J, l> 

(2j l  +12j2  + l'~l/2 ~2j1+ 3 2j2 --1"~ 1/2 l J ~ J2 j "~ 

E X 
m~ mj M J , , i , ~  \ m; m[ m~ , , m 2 mj /  

f ~D*Jl+I n*/~-a Y* D i~ O j~ Yl m dz. (25) X "'" J m~k~ "t~'m'2k ~ l',m~ COS 012 talk1 m2k2 , 

The numbers J, kl and k2 are the same on both sides of the operator and, 
consequently, do not feature in this notation. As the total momentum is conserved, 
all the matrix elements for which J '  ¢ J vanish. 
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Recurrent expressions [13] are needed for further calculations. For example, 

Jl a(jl, ma, kl) Dj ,- 1 mlkl Dr I a(ja + 1, mx, kl) 
COSfllDmlki -- 2jl -}'-i talk1 +j l ( j l  +1) tnlki ~ 2jl +1 

1//jl q-1 
5\ml+l 
l ( j l + l  

+ 2\m1 - 1  

where 

J1 + 1 
Dmlkl , 

(26) 

j l + l  j 2 - 1  j ) = ( _ l ) r , + l _ m , ( 2 j + l ' ] l / Z ( j  j l + l  j 2 - 1 ~  (30) 
ml m2 m r \ ~ ]  m r - - m l  ma / 

followed by 

= _ ~ E(j,j,~.~,j2 - 1) t] mr- 1 

+ mrF(j, j l , j2- -1)( j  jl j2 - -1)  
2j(j+l) m r --ml m2 / 

b(jl, ml, kO = x/(Jl + m,) (jl + m, - 1) (j2 _ k~) (29) 
jl 

Integral (28) is further transformed using the system of transformations and 
recurrencies for the Clebsch-Gordan coefficients 

jl +1 j2 - l ' ~ - -  
--ml.  m2 )~x / ( J l  + 1 )  2 - m l  

jl J2 -1 ' ]  
- -  m I m2 ,1 

C(j,j~,j2 -- 1) (j + 1 jt 
+ x/(J + 1) 2 - mr2 2(j + 1) (2j + 1) \ m r - m~ 

Quantities E, F and C are defined in the appendix. 

j 2  - -  1) 
m2 

(31) 

where 
a ( j l ,  m l ,  k l )  = N / ( J2  - -  ln2)(j21 - -  k2)  (27) 

ji 
In other cases the procedure is similar [13-]. 

Further procedure involves substitution from Eqs. (26) and (27), etc., into Eq. 
(25). Integration and summation over m;, mj, m~ and m~ yields ultimately 

(Jl + 1,j2 - 1,j, 11 cos 012 [jl,j2,j, l) 

= \ 2 j l + a 2 j 2  ~ , ( / t  Jr  J)Zm,~m~(J11 • m2 mj/ 

x I(Jl  + 1 1 . \  ml j2--1m2 mjJ)a(jl+l'ml'kl)a(j2'm2'k2)2jl +1 2j2 +1 

J2-1 j "~b(j~ +l,m, +l,kOb(jz,m2, k2 ) 
m z - 1  m s) 2jl +1 2j2 +1 

j 2 - 1  j "~b(j~ + l , - m a  +l,kt)b(j2.--m2, k2)],, 
(28) 

m2+l  m s) 2j-~ ~-i 2j2+1 J 
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The rigorous derivation including all the details of recurrent procedure is very 
tedious and need not be given here (see Ref. [13]). Using the orthonormality 
condition for the Clebsch-Gordon coefficients [13], we obtain ultimately 

( j l  +1, J2 - 1 ,  j, llcos 012[jl,j2,j,I) 
( k 2 ' 2  k 2 ' 2  ' " + 1 2  " ) __1 [ ( J l  + 1) 2 - 1] (J2 - 2)[J - -  ( J l  - - J2  ) ] [ (J  + 1) 2 - -  ( j l  - - J2  + 1)23 1/2 

2 j 2 ( 4 j ~ - - 1 ) ( j ~  + 1)2(2jl  + 3 ) ( 2 j l  + l )  ' 

(32) 
It is seen that a very complicated integral (25) is now transformed into a simple 

analytical form. Therefore, estimation of the matrix elements defined in Eq. (22) 
imposes minimal demands on computer memory and cpu time. 

All the integrals that appear in our calculations are given in the appendix. 
Derivation is onerous but conceptually easy. All the expressions are general and 
are not restricted to our system. For instance, in the system ion-dipole (two- 
dimensional rotor) we can substitute j '  = j [ ,  Jz = 0, j = J l, k l  = 0 and k 2 =0.  For 
j[ = jl -+ 1 and l' = l ___ 1 we obtain integrals of the form ( j [ ,  l', J[cos 01 l J1, l, J )  
in perfect agreement with the results reported earlier for this system [6]. 

Note that matrix elements (22) are independent of number M as a result of total 
momentum conservation in this system. However, if number M is to be cancelled, 
the forces connected with the V potential must be strictly Newtonian, i.e. obeying 
the principle of equal action and reaction. For this reason the angle relations in the 
V potential must not be selected arbitrarily (for instance, simplification in Eq. (10) 
to the first term). Otherwise, the principle of total momentum conservation may be 
violated. 

Finally, the matrix elements are obtained as the sums of the integral products 
evaluated in the appendix. For instance, 

~.n(O) - -  ~ltl//n , COS 201~/(m 0)) - -  /32(~/~ 0), COS 2 0 2 0  (0)) 

= - el ~, ~,, ~ (Jl,J",/"1 cos 01 [jl,j, l) (Jl,J', l'lcos01 [j~',j," l") 
j ; ' j ' "  l" 

- e 2 ~ ' , ( j ' ~ , j " , l " l c o s O 2 [ j z , j , l ) ( j 2 , j ' , l ' l c o s O 2 1 j ~ , j , " l " ) ,  (33) 
j ~ ' j "  1" 

Table 2. Representative values for the matrix elements r =4.0 ~,, 
n ~- {Jl = 3,j2 = 4 , j  =5 ,  I =5, J =7,  ks =2,  k2 =2} 

Set "m" Vm, . × 10 2 Vnm × 10 2 
[kcal /mol  l-kcal/mol] 

.h -- 1, .J2 --2,  .j - -4,  1 + 2  

.Jl - - l ,  j2 --2,.j --3, 1 +4  

.Jl -- 1, .J2 --2, .j --3, 1 

.11 - -  1, .Jz,J - - 2 ,  l + 2  

.11 -- 1, .J2, .J, l 
Jl,J2 --2, j, l 
Jl,  jz,.J --1, l --2 
.h, .J2, J -- 1, l 
.It, .J2, J, l 
.11 + l , j 2  +2, j +1, l - - 4  

--3.097 0.3522 
--6.031 0.0403 
-5.556 --0.3417 
--4.272 --0.5952 
--4.732 0.7558 
-5.974 --0.2355 
-5.117 --0.2577 
--4.904 0.0298 
--4.809 -4.809 
--5.076 -0.1375 
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where the summation limits are as follows:j~ - 1 ~< j[' ~< j~ + l; j2 - 1 ~< j~ ~< J2 + 1; 
j - 1  <~j" <~j +1; l" = l +_1. The remaining part of V.,. is transformed into the 
similar form. Representative results are listed in Table 2. As the V.,. elements are on 
the average smaller than V.. (or V,..,) ones by an order of magnitude we can write 

IOP~ ¢°), H'~P~°)) I >> I(¢'~ °),/~'~P~)) I. (34) 

4 Evaluation of the energy levels 

o A 
At long distances, longer than about 5 A, H'  becomes a very small perturbation 
with respect to /~o). Simple Rayleigh-Schr~Adinger perturbation calculus can be 
used under such circumstances. However, restriction to so long distances puts 
severe limitations on the amount of information that can be gained. 

What makes the matters worse, the simple perturbation calculus has other 
drawbacks. The energy levels are degenerated, for instance, with respect to the 
number j. Moreover, it can readily be shown that the spectrum of zero-point 
energies includes the states infinitely close to each other; this leads to similar 
difficulties as does degeneration. 

Apparently, more sophisticated methods are needed to approximate solutions 
of Eq. (2). The Brillouin-Wigner series [9] offers a promising option. This method 
yields the energy levels as the function [9] 

E.  = E~. °~ + E~. ~ + E~ ~' + E .  C~) + . . . ,  (35) 

where zero-point energies E~ °) are defined in Eq. (20) while other terms are given 
below: 

E~ ') = (~k. (°), H'~k~°)), (36) 

hh(O) ~,d/oh  12 
E(2)= (37) 

,.Z~. E. -- E (°) ' 

Cr,.~,(o~ r.l,(o~ 9 ,  .i,(o)~ ¢.1,(o) ffI, tpCmO~) 
E(n3) = E E (@(°)'l"t t l " m ' l l ' W m '  ' - "  " i 'm . . . . .  (38) 

m, ~ .  m ~. (~. - e ~  ~) ( e .  - ~,~) 

Note that the components of function (35) are not simple equivalents to the 
corrections in the Rayleigh-SchrSdinger series and exhibit quite a different form. 

As the unknown E. appears both on the left- and right-hand sides of Eq. (35), 
the mathematical formalism is more complicated than for the simple 
Rayleigh-SchriSdinger calculus. On the other hand, the E, level does not corres- 
pond to any of the E(,, °) levels; all the problems with the degenerated and too close 
states disappear. 

To assess at what range is Eq. (35) valid we substitute as the first approximation 
on the right-hand side, 

E .m = E~ °) + E. "). (39) 

For the degenerated and close states the following condition has to be obeyed 

Ig~l)l ~ I V.,~[. (40) 
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As already mentioned such a condition is indeed obeyed over the range 
r > 3.5 A, as E, (1) is generally rather large in our system. The negative sign of the 
first correction term is also of importance. For the very typical case which features 
E (°) > E(, °), the condition to be obeyed transforms into 

[E~I)I + [E~ °) - E~,°)I >> [ V,,,I. (41) 
(1) Since the contribution from E. overwhelms decisively the contributions from 

further expansion terms, E(, z) and  En (3), the Brillouin-Wigner series can encompass 
much wider range of levels than can the Rayleigh-SchriSdinger calculus. The higher 
rotational states typical for higher temperatures are of foremost interest. It follows 
from Eq. (41) that our calculations are the more accurate the larger the differences 
I E(m °) - E,(°)[ and, consequently, the higher the rotational levels. 

Iterations are needed, however, to obtain desired accuracy. Series (35) is the 
function of the type E. =f(E, ) .  First approximation yields E, cz) =f(E,(1)), fol- 
lowed by En(3) =f(En(2)), etc. Repetition continues until accuracy is found to be 
satisfactory. If convergence is to be achieved and a unique solution found, the 
Banach principle [14-] has to be obeyed at every ith iteration step 

f(En(i+l) - f (E , ( i ) )  < 1. (42) 
En(i+ 1) - -  En(i) 

It puts important restriction on the procedure, as the first approximation has to 
be in the vicinity of the sought zero E, value. If processes are divergent, a proper 
zero value cannot be singled out. 

Unfortunately, divergent solutions abound in our calculations especially at 
small distances r and low energies E, (°). Some happen at higher levels as well. 
However, if the contribution of the higher terms E, ~2) and E, ~3) does not exceed 
about 20%, the first substitution can suffice. 

The detailed form for sum (37) is 
.t .! A t - • - 

F (2 )  = 2 2 Z 2 '  I ( J ' l  , J 2 , J ,  l ' [ H  [ J 1 , J 2 , J ,  l ) [ 2  ( 43 )  
~n  ,~7,(0) 1" . k ' Jl J2 J" l' En- 12,j~ ,j~, , k ,  2 

where the limits of summation are: J1 - 2  ~<j~ ~<jl +2; j l  - 2  ~<j~ ~<j2 +2; 
j - 4  ~<j' ~<j +4; 1 - 4  ~< l' ~< l +4. The subscript prime denotes the discarding of 
the component m = n. Other sums are written likewise. 

Representative results are shown in Table 3. The values for E, (2) and E~ 3) are 
closely interlinked with each other. The E (3) term is estimated depending on the 
needs and time available for computing. E~ 2) and E, (a) are usually but not always 
negative. 

The kinetic and potential parts can be singled out in E,(r), 

fi 2 
E,(r) = r(°) + F (°) + l(l + 1) + U,(r), (44) ~Ja,  kl ~J2, k2 

where the first two components depict the kinetic energy of the intrinsic rotational 
motion of radicals, the third component is the centrifugal potential of the orbital 
motion, and the fourth component is the potential energy along r given by 

-(3) (45) Un(r)  = e 0 q- E n  (1) -k- En  (2) q- f-'n • 

Equation (44) is very helpful in the analysis of motion of reacting systems. 
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Table 3. Selected values for the series (35) (distance r in A, energies in kcal/mol) 

E. ~°~ ~.~ ~.~ ~.~ ~. <E.) 

.h =1 J2 =1 j = 2  l =3 J =1 kl =0  k2 =0  
3.7 -0.0975 -0.3036 -0.1242 -0.1083 -0.6336 -0.3279 
4.0 -0.0817 -0.0932 -0.0395 -0.0302 -0.3445 -0.2500 
4.2 -0.1677 -0.0338 -0.0174 -0.0126 -0.2315 -0.1916 
4.5 -0.1180 0.0025 0.0036 0.0011 -0.1108 -0.1150 

.h =2  .J2 =3 .j =2  l =30 J =30 kl =2  k 2 =2  
3.5 0.8964 -0.3175 -0.2454 0.3335 0.4274 
3.7 0.6091 -0.1536 -0.1440 0.3115 0.3787 
4.0 0.4627 -0.0420 -0.0077 0.4130 0.3944 
4.2 0.4424 -0.0115 -0.0033 0.4275 0.4187 
4.5 0.4491 0.0062 0.0005 0.4557 0.4520 

j x = l O  j2=lO j = 1 5  l = l O  J = 2 0  k t = 5  k2=O 
3.5 5.804 -0.3353 0.0447 5.514 5.335 
3.7 5.562 -0.1625 -0.0123 5.388 5.332 
4.0 5.472 - 0.0447 - 0.0084 5.418 5.403 
4.2 5.482 -0.0125 0.0032 5.473 5.458 
4.5 5.527 0.0062 5.533 5.529 

Once the energy level E, is known, its wave function can be estimated [9] as 

. , ~ .  E _ E ~ )  + . . . .  (46) 

Evaluating averages note that function (46) is not normalized. 

5 Conclusions 

The Brillouin-Wigner series is a unique self-consistent variant of the perturbation 
calculus. Its features can be used to advantage but only upon the proviso that 
conditions (40) and (41) are obeyed. For instance, if the first term E~ 1) vanishes, the 
use of Brillouin-Wigner series offers no improvement compared with the simple 
Rayleigh-SchriSdinger series. 

~,(3) ~(4) The convergence of series (35) with inclusion of successive terms, ~, , _ ,  , etc., 
is a problem in itself, beyond the scope of this paper. Some comments are in order, 
however, to support our results. As we are concerned with higher energies and 
temperatures, the procedure similar to that described by Margenau and Kestler 
[-15] can be used. The angle dependencies in the V potential are replaced by their 
averages obtained by integration over the full spherical angle and divided by 4ft. 
We obtain (cos ~ 01) -= (cos202) - (cos2012) =½ and (cos01) =0, etc. The 
Schr/Sdinger equation (2) can then be solved rigorously yielding the mean value for 
the energy, (E,) .  Representative results are shown in Table 3. It is seen that only 
for the lowest states does (E , )  deviate markedly from E, reaching as large 
a deviation as 20%. The higher the state the lower the difference, dwindling to only 
2-3% for the highest rotational states. 
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It should be emphasized that only the general idea is outlined in this work. 
Many details are omitted, as, for instance, the problem how and when to evaluate 
E~ 3) and some others. Dealing with different systems one cannot find ready for use 
recipies of E, estimation. Every case is unique. 

It can be claimed that the aim of this work as given in Introduction has been 
achieved. The estimated En(r) levels are numerous and accurate enough to offer 
considerable insight into the dynamics of interacting system. The weakness of the 
procedure, such as divergence for some of the states, can be alleviated by using 
special methods such as interpolation. 

The results obtained in this paper are used extensively in the study on the 
rate of methyl radical recombination at higher pressures and temperatures 
[113. 

Appendix  

The integrals used for the estimation of matrix elements are calculated as follows: 
Firstly, the expressions are defined: 

A ( a , b , c ) - - x / ( - a + b + c + l ) ( a - b + c ) ( a + b - c ) ( a + b + c + l  ), (A1) 

B(a, b, c) = a(a + 1) + b(b + 1) - c(c + 1), (A2) 

C ( a , b , c ) = x / ( - a + b + c ) ( - a + b + c  + l ) ( a - b + c ) ( a - b + c  +l), (A3) 

D ( a , b , c ) = x / ( - a + b + c ) ( a - b + c + l ) ( a + b - c ) ( a + b + c + l  ), (A4) 

E ( a , b , c ) = x / ( a + b - c ) ( a + b - c + l ) ( a + b + c + l ) ( a + b + c + 2 ) ,  (A5) 

f ( a ,b , c )  = ~ / ( -  a + b + c + l ) ( a -  b + c)(a + b -  c + l ) ( a  + b + c +2). 

(A6) 

If the terms of the type 1/jlj are present in some integrals, this integral retains 
meaning only at j l  > 0 and j > 0. 

1. Integrals (Jl ,J~,j ' , / '[cos 01 [jl,j2,j, I}. 

( j l  -- 1,je,j  -- 1, l -- 1 [cos 01 [jl , jz,j ,  l} 

1 ~ -- k 2 E(j  -- 1,jl,j2) E(I -- 1,j, J) 

= - 4 j~ x/(2jm + 1)(2j~ - 1)j x / (2j  + 1)(2j - 1) x / ( 2 / +  1 ) ( 2 / -  1)' (A7) 

(Jl , j2 , j  -- 1, l -- 1 [COS 01 ]jl ,J2J, l) 

1 k I A(j, jl , j2) E ( l -  1,j, J) 
- 4j~(j~ + i ) j x / ( 2  j + l ) ( 2 j - 1 ) x / ( 2 / + l ) ( 2 / - - 1  )' (AS) 

( j l  + l , j 2 , j  --1, 1 --1 [COS 01 [Jl,J2,j, l) 
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1 x/(Jl + 1) 2 - k~ C(j - -  1,jl,j2) 

M. Naro±nik and J. Niedzielski 

E(l -- 1, j, J) 
(A9) m 

4 (j~ + 1).,,/(2j1 + 1) (2jl --~ 3)jx/(2j + 1)(2j -- 1) x / (2/+ 1)(2/-- 1) 

(Jl --1,j2,j, l --1 [ cos 01 ]jl,j2,j, l) 

1 ~ - -  k 2 D(j,j~,j2) A(1,j, J) 

4jlx/(2j l  +1)(2jl --1) J(J +1) ~/(2/ +1) (2/ --1) 

(j l ,J2,J,  l -- 1 I cos 01 [jl,j2,j,  l) 

1 ka B(j,j~,j2) A(I,j, J) 
4 jx ( j~+l )  j ( j + l )  ~/ (2 /+1) (2 / -1 )  

(J l  + 1,j2,J, 1 - 1  1 cos 011Jl,Jz,j, I> 

1 4 ( j l  + 1) 2 - k2~ F(j,j~,j2 ) A(1, j, J) 

4(ja +l )x/ (2j  ~ +l)(2jx +3) J(J +1) ,,,/(2 / +1 ) (2 / -1 )  

( j l  -- 1,jz,j + 1, 1 -- 1 l cos 01 [jl,j2,j, l)  

1 x//-f( -- k~ C(j + 1,j~,j2) C(I - 1,j, J) 

4j l  x/(2jl + 1)(2jl - 1) (j + 1) x/(2j + 1)(2j + 3) x / (2 /+  1) (2 / -  1) 

(A10) 

(All) 

(A12) 

(A13) 

( j l , j z , j  + 1, l --11 cos 01 Ijx,Ja,j, l) 

1 ka A(j -}- 1,j 1 ,J2) C(I - 1,j, J)  

4 j a (jx + 1) (j + 1) ~/(2j + 1)(2j + 3) ~ / ( 2 / +  1)(21 - 1) 

(jx +l , j2 , j  + 1, l - 1  ]cos 01 IJx,j2,J, l) 

1 x/(J,  + 1) 2 -- k~ E( j  + 1 , j~, jz )  C(I - 1,j, J)  

4( j l  + 1)x/(2j a + 1)(2ja +3) ( j  + 1)x/(2 j + 1)(2j +3)~/(2/+ 1)(2/-1)  

(A14) 

(Jl --1,j2,j  --1, 1 + l[cos 01 [jl,j2,j, I) 

1 ~ -- k~ E(j --1,jl,j2) C(I + 1,j, J) 

= 4 j l  4 (2 j l  + 1)(2jl -- 1)j~/(2j"+ 1)(2j -- 1) ~/(2/+ 1)(2/+ 3) 

( j l , j z , j  - 1 ,  l + l lcos 0~ [Jl,J2,J, 1> 

1 k~ A(j, jl  ,J2) C(I + l,j, J) 
4jx(j1 + 1) j~/(2j + 1)(2j - 1) x / (2 /+  1)(2/+ 3) 

(A15) 

(A16) 

(A17) 

( j l  + 1,jz,j -- 1, l + 1 [cos 01 [Jl,j2,j, l) 
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1 x/(Jl  + 1) -- k 2 C ( j  - 1, j l ,  J2) C(1 + 1,j, J)  

= - 4 (jl + 1)x/(2jl + 1)(2jl + 3)jx/(2 j + 1)(2j - 1) ~/(2l + 1)(2l +'3) 
(A18) 

( j i  -- 1,j2,j, I + 1 [cos 01 [jl,j2,j, 1) 

@ -- k 2 D(j, j l , j2) F(J, l,j) 

4j ,x/ (2j l  +1)(2jl --1) J(J +1) , , /(2/+1)(2l +3) 
(A19) 

(Jl,J2,J, 1 + 1 [cos 01 [Jx,Jz,J, l) 

1 kl B(j, jI,j2) F(J, l,j) 

4 Jx (jx + 1) j ( j  + 1) .,,/(2 / + 1)(2l + 3) 
(A20) 

(J l  + 1,j2,J, l + 1 I cos 01 IJl,J2,J, I)  

x/(Jl + 1) 2 -- k2 F(j, jl,J2) F(J, l,j) 

4 (Jl + 1)x/(2jl + 1)(2jl + 3) J(J + 1) .,,/(2 / + 1)(2l + 3) 
(A21) 

(Jx -- 1,j2,j + 1, l + 1 I cos 01 [Jl,J2,J, l) 

-- k 2 C(j + 1,jl,j2) E(I,j + 1, J) 
(A22) 

4j~ x/(2j + 1)(2jl - -1)( j  + 1)x/(2 j + 1)(2j + 3 ) a / ( 2 / +  1)(2l +3) 

1 ka 

( j l , j 2 , j  +1, l +1[cos01 [j l , j2,j ,  I) 

A ( j + I ,  jl,j2) E ( l , j + l , J )  

4 Jl (Jl 371) (j + 1)~/(2j + 1)(2j + 3) x / (2 /+  1)(2/+ 3) 
(A23) 

(Jl +l,J2,J +1, l +1 ]cos 01 [Jl,J2,j, I) 

1 x/(Jl +1) 2 - k 2  E ( j + I , j l , j 2 )  E ( l , j + l , J )  

4 (jl + 1) x/(2jt + 1)(2j1 + 3) (j + 1) x/(2j + 1) (2j + 3) x/(2l + 1) (2/+ 3) 
(A24) 

All other integrals are zero. 

2. Integrals (j~,j '2,j ' , / ']cos 02 [ j l , j2, j ,  I): 
Estimation is based on the symmetry 

(j ' l , j~,J' , / '  [ cos 02 [Jl ,j2,j, l) 

= _ ( _  1)Ji+J'+ v-J2-J- 1 (j~,j ' l , j ' , / '1 cos 02 [Jz,Jl,j, 1). (A25) 

For example, 

( j l  ,j2 --1,j, 1-1  [cos 02 [ji ,JzJ, l)  = - (J2 - 1 , j l  ,j, 1 - 1  ]cos 02 [J2,Jx ,j, l) 
(126) 
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On the basis of Eq. (A10) we obtain 

(J,,J2 --  1,j, l -- 1 [cos Oz IJa,Jz,J, l) 

~22 - k 2 D(j, jz , j l )  A(l,j, J) 

4j2,f(2j2 + 1)(2j2 -- 1) J(J + 1) 

and so forth. 

~/(2/+ 1)(2/-  1) 

M. Naro~nik and J. Niedzielski 

(A27) 

3. Integrals (Jl,J'z,J' ,/ ' l  cos 012 IJl,J2,J, l). 

( j , , j2 ,J ,  II cos 012 ]jx,jz,j, l) 

1 kl k2 
1)[j(j +1) - j l ( j l  + l ) - j z ( J2  +1)] (A28) 

2ja(jl + 1)jz(j2 + 

( j ,  - 1,j2,j, l [ cos 012 IJl,j2,j, l) 

1 k2 (j2 _ k~) [j2 _ (j _jz)2] [(j +Jz + 1) z - - i l l  (A29) 
--  2 .2 .2 J1(4jl - -  1)jz2(jz + 1) z 

(jl ,J2 - 1,j, l[ cos 012 [Jl ,J2,J, l) 

-----~lk i ( '(j2-k2)[j2-(j-jl)2"][(j-'-J~'~_.2Jz(4jz --,~_.2,':-_ 1)jl(j 1 +---~-+J11) +1)2 _j~])1/2 (A30) 

( j l  + 1,j2,j, I I cos 0,e Ij, ,Jz,j,  l) 

l ( [ ( j 1 + l ) 2 - k Z l ] [ ( j 1 + l ) 2 - ( j - j 2 ) 2 ] [ ( j + j 2  + i ) 2 - ( j i  +l)2].)i/2 
= - -~kz  (2jl + 3)(2jl + 1)(jl + 1 "2~ J2tJ2Z" • +l)Z 

(A31) 

( j l , j z  + 1,j, 11 cos 012 l jl ,j2,j, l) 

1 ( [ ( j 2 + l ) 2 - k ~ ] [ ( j 2  + l ) e - ( j - j l ) 2 J [ ( j + j l  +1)2 - (j2 +1)2]) '/2 
= ~ ]£1 (2j2 + 3) (2j2 + 1)(j2 + 1)2J~ (jl + 1) 2 

(A32) 

( j l  + l , ja  -1 , j ,  l lcosOxzlj l , jz , j ,  l) 

l {[(j ,  + l)Z_kZl] .2 k z .z • • 1 z -+1 2 ,1/2 l - J 2 -  2-11-J - - ( J l - - J 2 +  ) ][-(J ) - - ( J l - - J z - l - 1 )  2] 
=-2 ~ j22(4j~ -1)( j l  +1)2(2j, + 3)(2jl +1) ) 

(A33) 

( j l  - 1,j2 + 1,j, I I cos 012 Ijl,j2, J, I) 

=1 ([-(jz + 2 1 ) 2 -  k22] [Ja2 j~ -k2][JZ-(J2(4j~ - 1) (Jz + 1) 2-jl(2j2 +1)2] [ ( J +  3) (2j2 ++l)2-(jz-Jll) +1)2]) 1/2 

( j l  +l , j2 +l , j ,  llcosO12[jl,jz, j, l) 

(A34) 
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l ( [ ( j t  + 1 ) 2 - k 2 ]  [(j2 + 1 ) 2 - k 2 ]  [ ( j l  +Jz  +2)  z - ( J  +1)2]  [(Jl  +J2-t-2)  2 _j2]~1/2 

(2j, +3)(2j~ + l ) ( j ~  +1)  1 (2ja + 3)(2jz + l ) ( j z  + 1) z 

< j l  - 1,j2 - 1,j ,  I[ cos 012 [jl,J2,j, l> 
_ k , ) ( j 2  _ k 2 ) [ ( j l  + j2 )2  _ j 2 ]  [ ( j l  +j2)2 (j +1)2]  1/2 

---- - - -  .---fW2 "Tz--g. 2 - -  - -  7-d. 2 - -  
JlJ  (4jl - 1 ) ( 4 h  - 1) 

All o the r  in tegra l s  are  zero. 

(A35) 

(A36) 
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